Tankyrase Inhibition Causes Reversible Intestinal Toxicity in Mice with a Therapeutic Index < 1
نویسندگان
چکیده
منابع مشابه
Inhibition of CUL4A Neddylation causes a reversible block to SAMHD1-mediated restriction of HIV-1.
The deoxynucleoside triphosphohydrolase SAMHD1 restricts retroviral replication in myeloid cells. Human immunodeficiency virus type 2 (HIV-2) and a simian immunodeficiency virus from rhesus macaques (SIVmac) encode Vpx, a virion-packaged accessory protein that counteracts SAMHD1 by inducing its degradation. SAMHD1 is thought to work by depleting the pool of intracellular deoxynucleoside triphos...
متن کاملDesigning of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1
Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...
متن کاملDesigning of Testable Reversible QCA Circuits Using a New Reversible MUX 2×1
Recently testing of Quantum-dot Cellular Automata (QCA) Circuits has attracted a lot of attention. In this paper, QCA is investigated for testable implementations of reversible logic. To amplify testability in Reversible QCA circuits, a test method regarding to Built In Self Test technique is developed for detecting all simulated defects. A new Reversible QCA MUX 2×1 desig...
متن کاملChronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice
Diquat is a bipyridyl herbicide that has been widely used as a model chemical for in vivo studies of oxidative stress due to its generation of superoxide anions, and cytotoxic effects. There is little information regarding the toxic effects of diquat on the female reproductive system, particularly ovarian function. Thus, we investigated the reproductive toxic effects of diquat on female mice. C...
متن کاملCalf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets.
It has been demonstrated that human placental alkaline phosphatase (HPLAP) attenuates the lipopolysaccharide (LPS)-mediated inflammatory response, likely through dephosphorylation of the lipid A moiety of LPS. In this study, it is demonstrated that also alkaline phosphatase derived from calf intestine (CIAP) is able to detoxify LPS. In mice administered CIAP, 80% of the animals survived a letha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Toxicologic Pathology
سال: 2015
ISSN: 0192-6233,1533-1601
DOI: 10.1177/0192623315621192